Comparison of synthesis gas generation concepts for capacity enlargement of ammonia plants

Dr. Klaus Nölker, Dr. Joachim Johanning

Nitrogen & Syngas 2012, Athens, February 20 - 23

ThyssenKrupp Uhde

Contents:

- Introduction
- Basics of capacity enlargements
- Compared process concepts
- Energy consumption evaluation
- Investment cost evaluation
- Overall CAPEX / OPEX comparison
- Summary

Contents:

Introduction

- Basics of capacity enlargements
- Compared process concepts
- Energy consumption evaluation
- Investment cost evaluation
- Overall CAPEX / OPEX comparison
- Summary

Introduction (1)

Basic situation

- Advantages of capacity enlargements compared to the erection of a new plant
 - better adjustment to market growth
 - lower overall investment
 - faster implementation
 - ⇒ much smaller risk
- The success of a revamp is not independent of
 - > the chosen revamp concept
 - > the amount of additional capacity
- It is therefore of prime importance
 - ⇒ to select the best overall revamp concept and
 - ⇒ to determine the most economical extra capacity

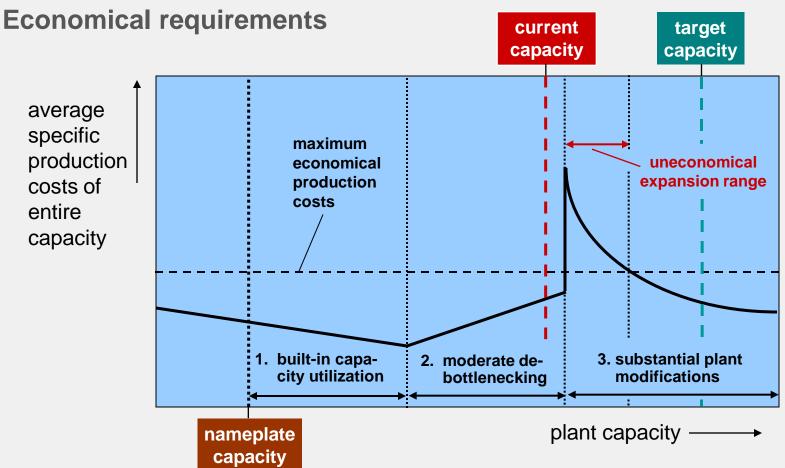
Introduction (2)

Scope of the presentation

- Presentation reports the results of a detailed comparison of three different expansion concepts
- Investigation
 - was based on an existing older ammonia plant (reference plant capacity at the time of the investigation ~1665 mtpd)
 - envisaged a 30% expansion (~ 500 mtpd)
 - mainly focused on the synthesis gas generation section
 - covered the entire process plant <u>and</u> the steam system
- Compared synthesis gas generation expansion concepts
 - I. Upgrading of existing steam reformer / secondary reformer
 - II. Secondary reformer operation with enriched air
 - III. Stand-alone autothermal reformer (ATR) parallel to existing syngas generation

Contents:

- Introduction
- Basics of capacity enlargements
- Compared process concepts
- Energy consumption evaluation
- Investment cost evaluation
- Overall CAPEX / OPEX comparison
- Summary


Basics of capacity enlargements (1)

Economical requirements

Capacity expansions can usually be assigned to 3 distinct ranges

- 1. utilization of built-in capacity reserves
- 2. debottlenecking of limited numbers of process units / equipment items
- 3. substantial plant modifications
- Specific production costs of the additional capacity show significantly different characteristics in these 3 ranges
- Maximum economical capacity depends on the
 - \rightarrow reserves originally built into the individual process units
 - \rightarrow plant location (feedstock cost and availability)
 - \rightarrow market situation

Basics of capacity enlargements (2)

⇒ In general, a detailed investigation is required to determine the situation of a plant and the most suitable expansion capacity

Basics of capacity enlargements (3)

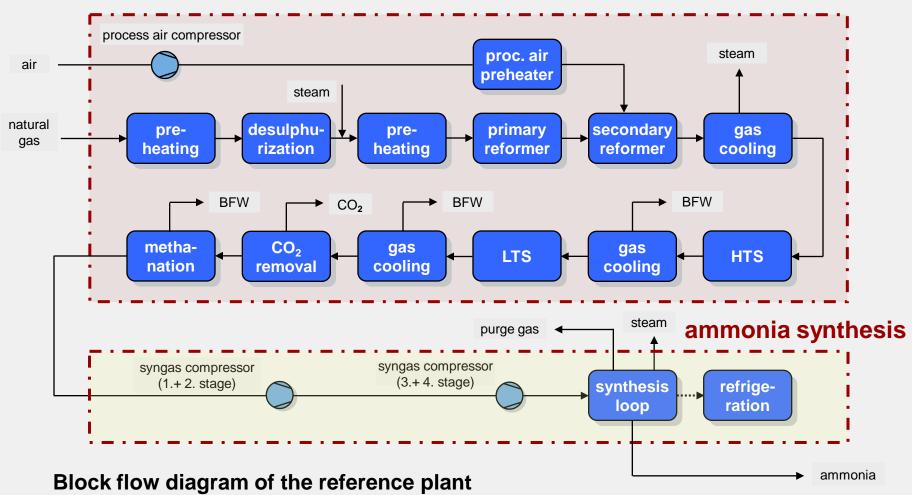
Technical requirements

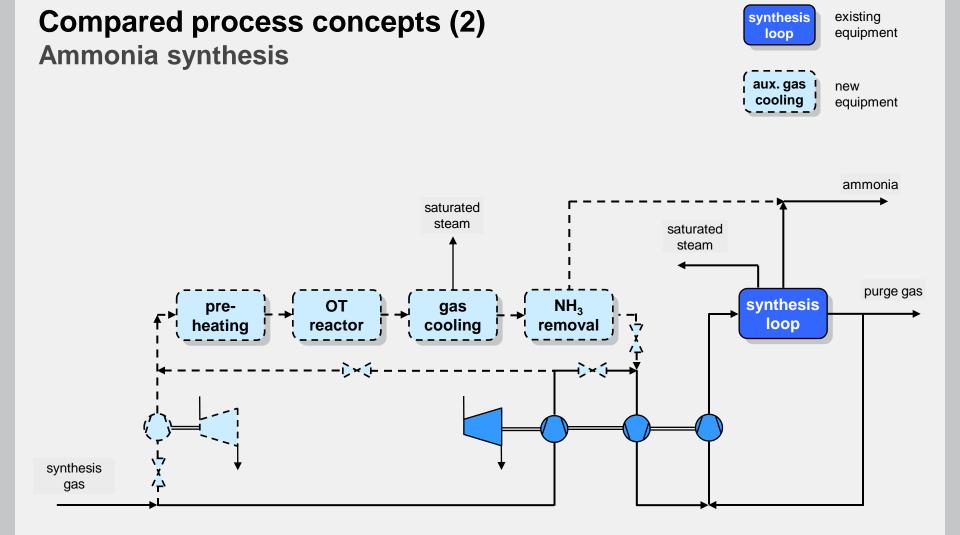
Requirements	Countermeasures
Increase flowrates through process	- compressor / driver improvement
flowpath	- larger cross sectional areas
Transfer larger amounts of heat	- larger heat transfer surfaces
	- better heat transfer coefficients
	- increased temperature differences
Maintain reaction conversions	- elevated reaction temperatures & press.
	- larger catalyst volumes
Sustain separation of species	- improved internals of separation units
	 better solvents (solubility / selectivity)

Contents:

- Introduction
- Basics of capacity enlargements

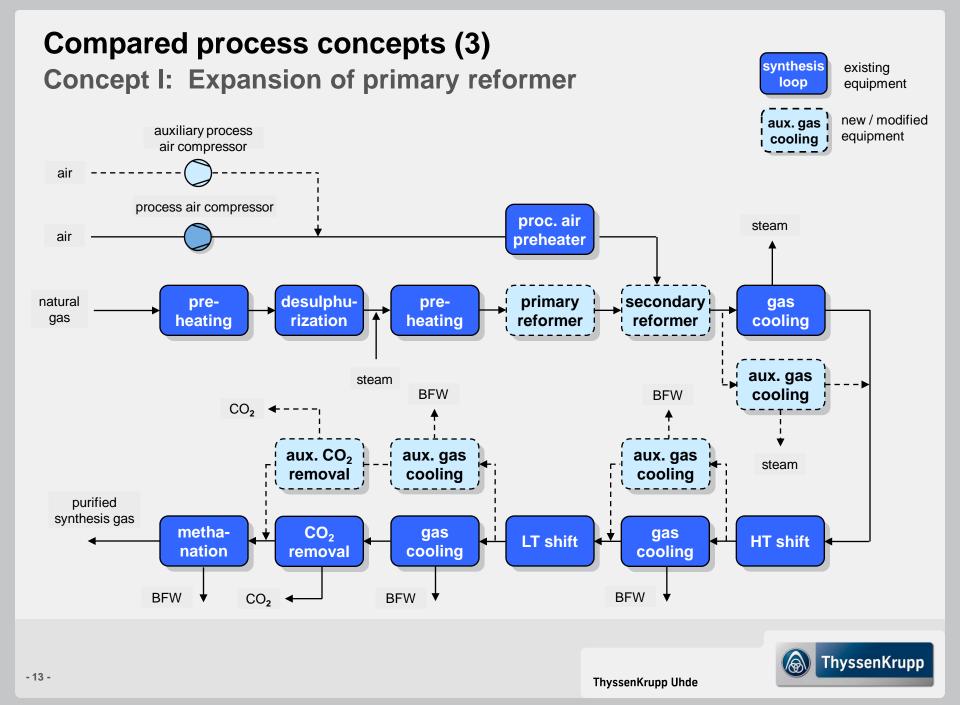
Compared process concepts

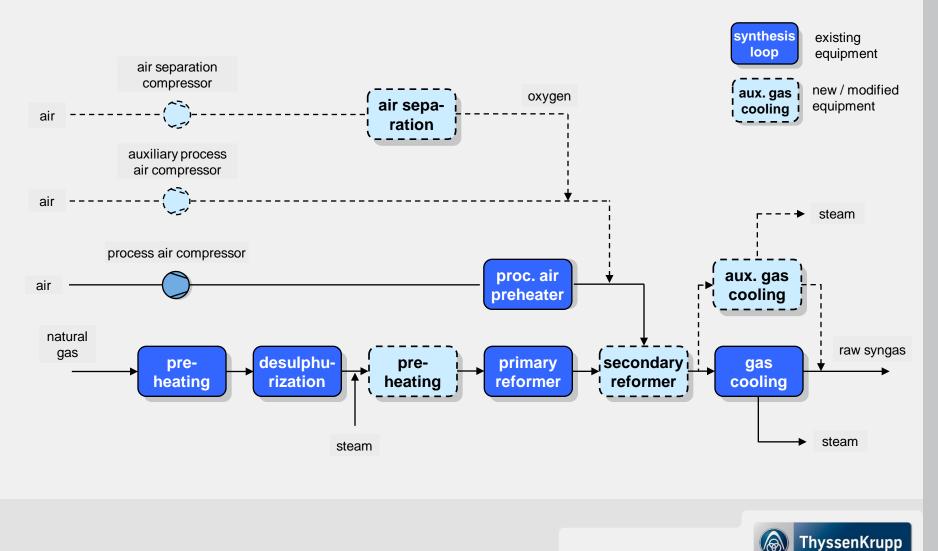

- Energy consumption evaluation
- Investment cost evaluation
- Overall CAPEX / OPEX comparison
- Summary

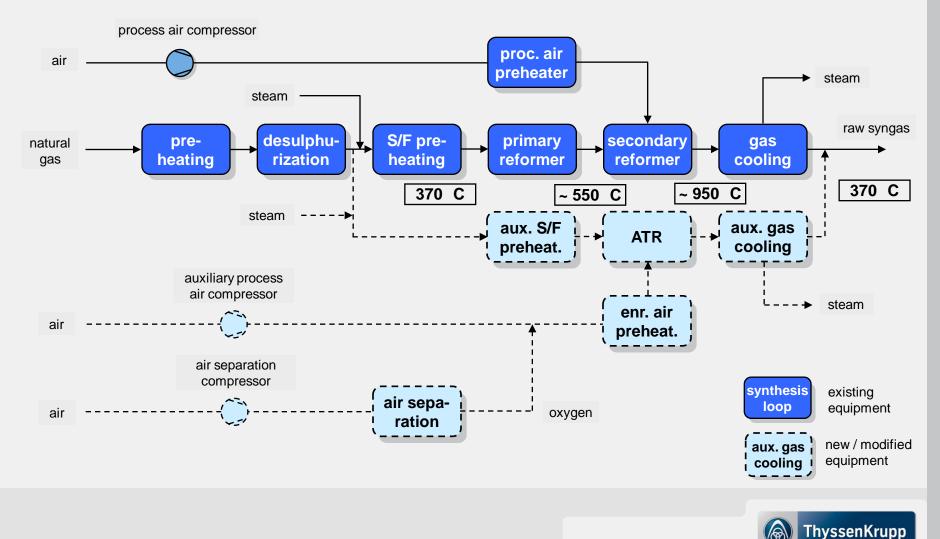

Compared process concepts (1)

Reference plant

synthesis gas generation




Ammonia synthesis expansion with Uhde dual-pressure concept


Compared process concepts (4)

Concept II: Secondary reformer operation with enriched air

Compared process concepts (5)

Concept III: New ATR parallel to existing synthesis gas generation

Compared process concepts (6)

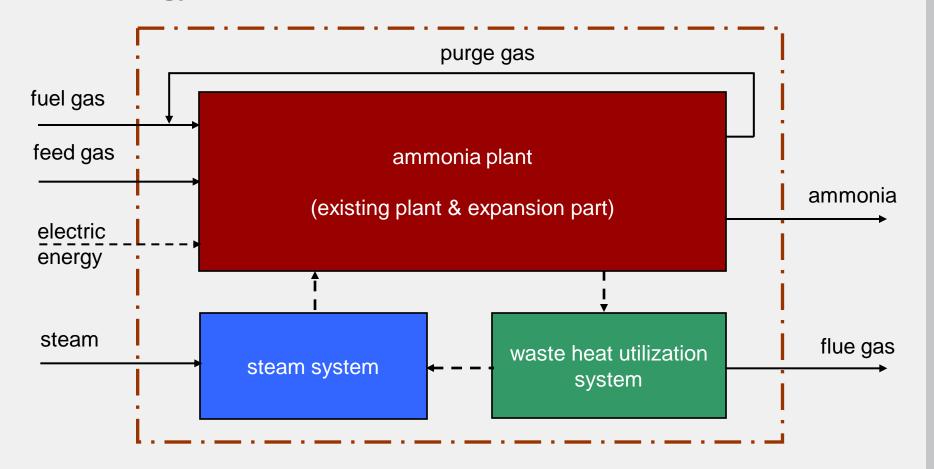
Main equipment items in the expansion concepts

	expansion concept		
	I	II	III
new or modified main equipment item	enlarged SMR	sec. ref. with enriched air	ATR
auxiliary air compressor	x	x	x
air separation unit		x	x
steam reformer oven box expansion	x		
combustion air fan	x		
flue gas fan	x		
secondary reformer replacement / modification	0	x	
autothermal reformer			x
fired heater			x
process air preheating	0	0	
combustion air preheating	0	0	
feed / steam preheating coil	0	0	
natural gas preheating coil	0	0	0
waste heat boiler & steam drum	x	x	x
auxiliary synthesis gas compressor	x	x	x
once-through (OT) synthesis	x	x	x
CO ₂ absorber	x	x	x

x new equipment

o modified equipment

Contents:


- Introduction
- Basics of capacity enlargements
- Compared process concepts

Energy consumption evaluation

- Investment cost evaluation
- Overall CAPEX / OPEX comparison
- Summary

Energy consumption evaluation (1) Methodology

Relevant utilities and balanced plant sections

Energy consumption evaluation (2) Methodology

- Calculation of individual utilities consumptions via Aspen Plus-based material and heat balances
- Calculations contained entire process plants and steam systems
- Equipment characteristics included in the process models
 - pressure losses

- := f (flowrate)
- compressor heads / eff. := f (flowrate; speed)
- heat transfer

:= f (mean log. temperatur difference)

Transformation of utilities consumptions into equivalent energy consumptions:

- feed and fuel gas \succ
- >steam
- electric power \geq
- purge gas ammonia synthesis \Leftrightarrow lower heating value

- ⇔ lower heating values (LHV)
- ⇔ specific enthalpy
- ⇔ 30% overall eff. from nat. gas to el. power

Energy consumption evaluation (3) Results

Individual energy consumption figures of the expansion concepts

		revamp concept			
		I		Ш	
utility	unit	enlarged SMR	sec. ref. with enriched air	ATR	
feed gas	Gcal / t _{NH3}	5,45	5,80	5,77	
fuel gas	Gcal / t _{NH3}	2,76	2,42	2,39	
imported MP steam	Gcal / t _{NH3}	0,50	0,41	0,38	
electrical power	Gcal / t _{NH3}	0,23	0,28	0,27	
overall spec. cons.	Gcal / t _{NH3}	8,94	8,91	8,81	

Result: ATR-based concept shows lowest overall energy consumption

Contents:

- Introduction
- Basics of capacity enlargements
- Compared process concepts
- Energy consumption evaluation

Investment cost evaluation

- Overall CAPEX / OPEX comparison
- Summary

Investment cost evaluation (1)

Calculation of capital cost for each expansion concept

• Scaling of individual equipment cost via

$$\frac{C_{rc,i}}{C_{bc,i}} = \left(\frac{V_{rc,i}}{V_{bc,i}}\right)^{\alpha}$$

- C capital cost of equipment "i"
- V volume flowrate
- rc revamp concept component
- bc base / reference component
- α cost escalation exponent
- Cost for engineering, piping, instrumentation etc. accounted for through cost escalation factors to individual equipment cost
- Entire erection costs for each expansion concept derived as sum of adjusted equipment cost

Capital cost evaluation (3)

Importance of tie-in time

Expansion concepts are associated with significantly different tie-in time spans

 \rightarrow considerable differences in lost production revenues

		expansion concept		
		I	II	Ш
subject	unit	enlarged SMR	sec. ref. with enriched air	ATR
tie-in situation		reconstruction of steam reformer	replacement / modific. of sec. reformer	only non- critical tie-ins
add. downtime beyond regular maintenance shutdown	days	28	7	0
add. lost production revenue ^{*)}	Mio. USD	16,8	4,2	0,0

^{*)} lost prod. revenue of 0,6 Mio USD/d assumed (400 USD/mt_{NH3}, 3,0 USD/MMBTU)

Capital cost evaluation (4) Results

Capital cost of the expansion concepts in Mio. USD

	expansion concept		
	I	Π	Ш
plant section / cost component	enlarged SMR	sec. ref. with enriched air	ATR
synthesis gas generation	80,40	98,40	93,70
OT synthesis	71,20	71,60	69,10
steam system	2,10	2,20	2,10
reformer waste heat section	3,90	2,90	3,10
basic erection cost	157,60	175,10	168,00
lost production revenue	16,80	4,20	0,00
total capital cost	174,40	179,30	168,00

Result: ATR-based concept shows lowest overall investment costs

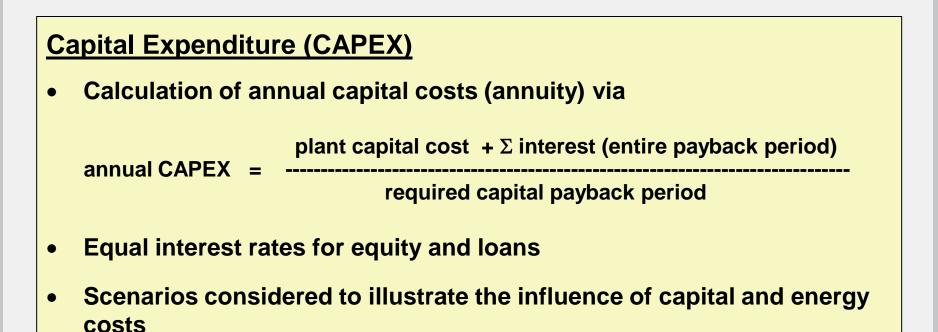
Contents:

- Introduction
- Basics of capacity enlargements
- Compared process concepts
- Energy consumption evaluation
- Investment cost evaluation
- Overall CAPEX / OPEX comparison
- Summary

Overall CAPEX / OPEX comparison (1) Methodology

General				
All expansion concepts have the same annual turnover				
\Rightarrow specific production costs reflect the economic ranking				
Individual specific production costs are calculated according to annual CAPEX + annual OPEX				
specific production cost =				
	annual production			
	annual production			

Overall CAPEX / OPEX comparison (2) Methodology


Operating expenditure (OPEX)

- Costs / credits included in the OPEX calculation for
 - feed and fuel gas
 - steam
 - electrical energy
 - purge gas ammonia synthesis
- All other costs contributing to OPEX e.g. for
 - > staff
 - > maintenance
 - > tax

assumed to be the same for all expansion concepts and therefore excluded.

Overall CAPEX / OPEX comparison (3) Methodology

- Annual interest rates: 5 / 15 %
- Capital payback period: 5 / 15 yrs.
- Specific energy cost: 0,7

0,75 / 3,00 USD/MMBTU

Overall CAPEX / OPEX comparison (4) Results

Specific production costs of the expansion concepts in USD / t_{NH3}

			expansion concept		
			I	Ш	Ш
spec. energy cost (USD/MMBTU)	annual interest rate [%]	capital payback period [yrs.]	enlarged SMR	sec. ref. with enriched air	ATR
0,75	5	15	128	130	123
	15	5	329	336	316
3	5	15	212	210	203
3	15	5	412	416	395

- ATR-based concept shows lowest production costs in all cases, irrespective of energy cost, requested capital payback time and annual interest rate.
- Significant margins in all scenarios to cover costs not accounted for in this comparison.

Contents:

- Introduction
- Basics of capacity enlargements
- Compared process concepts
- Energy consumption evaluation
- Investment cost evaluation
- Overall CAPEX / OPEX comparison

Summary

- Presentation reported the results of an investigation concerned with the economics of ammonia plant production expansion
- Main focus on the synthesis gas generation
 - \rightarrow Same NH₃ synthesis expansion concept applied for all revamp concepts
- Investigation established an economic ranking between the expansion concepts via a CAPEX + OPEX comparison

• <u>Conclusion</u>:

A stand–alone ATR parallel to the existing syngas generation

- ⇒ is a very competitive alternative in general
- ⇒ requires minimum interference with the existing plant
- is the superior solution if full implementation costs and associated risks are taken into consideration

Thanks for your attention

